Acoustic absorption and generation in ducts of smoothly varying area sustaining a mean flow and a mean temperature gradient
نویسندگان
چکیده
In ducts with varying cross-sectional area and sustaining a subsonic non-isentropic mean flow, the axially flow conditions affect acoustic energy balance of system. This is significant in understanding controlling thermo-acoustic phenomena, particularly combustors. work aims at quantifying change such configurations, using absorption coefficient, $\Delta$. The response duct to forcing determined an analytical model, neglecting effect entropy fluctuations on field, subsequently, $\Delta$ estimated. model predictions are validated linearised Euler equations (LEEs) solver. was found be accurate for Mach numbers below $0.25$, provided lower frequency limit set by solution satisfied. For conically linear temperature gradient, it observed that showed very little dependence frequency, absolute value tended maximised when upstream boundary anechoic rather than non-anechoic. More importantly, also show stronger gradient variation configurations. Further parametric optimisation studies revealed crucial finding positive representing heated caused absorption. Similarly, negative cooled generation -- key result this analysis. behaviour shown consistent simplified analysis balance. Based finding, linearly proportional reduction achieved changing gradient.
منابع مشابه
Acoustic modes in a duct with slowly varying impedance and non-uniform mean flow and temperature
Noise from the auxiliary power unit (APU) is becoming an increasingly important aircraft design constraint because of the noise exposure during ground operations (“ramp-noise”). Reduction of noise may be achieved by liners in the exhaust duct. In this paper, we will consider the propagation of sound through the APU exhaust duct, which is typically straight with an axially varying liner depth, a...
متن کاملAcoustic-Mean Flow Interaction in Solid Propellant Rocket Motors
There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...
متن کاملAcoustic-Mean Flow Interaction in Solid Propellant Rocket Motors
There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...
متن کاملa contrastive analysis of concord and head parameter in english and azerbaijani
این پایان نامه به بررسی و مقایسه دو موضوع مطابقه میان فعل و فاعل (از نظر شخص و مشار) و هسته عبارت در دو زبان انگلیسی و آذربایجانی می پردازد. اول رابطه دستوری مطابقه مورد بررسی قرار می گیرد. مطابقه به این معناست که فعل مفرد به همراه فاعل مفرد و فعل جمع به همراه فاعل جمع می آید. در انگلیسی تمام افعال، بجز فعل بودن (to be) از نظر شمار با فاعلشان فقط در سوم شخص مفرد و در زمان حال مطابقت نشان میدهند...
15 صفحه اولassessment of deep word knowledge in elementary and advanced iranian efl learners: a comparison of selective and productive wat tasks
testing plays a vital role in any language teaching program. it allows teachers and stakeholders, including program administrators, parents, admissions officers and prospective employers to be assured that the learners are progressing according to an accepted standard (douglas, 2010). the problems currently facing language testers have both practical and theoretical implications but the first i...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Sound and Vibration
سال: 2021
ISSN: ['1095-8568', '0022-460X']
DOI: https://doi.org/10.1016/j.jsv.2021.116437